Abstract

Microalgae are discussed as a potential renewable feedstock for biofuel production. The production of highly concentrated algae biomass with a high fatty acid content, accompanied by high productivity with the use of natural sunlight is therefore of great interest. In the current study an outdoor pilot plant with five 30 L Flat Panel Airlift reactors (FPA) installed southwards were operated in 2011 in Stuttgart, Germany. The patented FPA reactor works on the basis of an airlift loop reactor and offers efficient intermixing for homogeneous light distribution. A lipid production process with the microalgae Chlorella vulgaris (SAG 211-12), under nitrogen and phosphorous deprivation, was established and evaluated in regard to the fatty acid content, fatty acid productivity and light yield. In the first set of experiments limitations caused by restricted CO₂ availability were excluded by enriching the media with NaOH. The higher alkalinity allows a higher CO₂ content of supplied air and leads to doubling of fatty acid productivity. The second set of experiments focused on how the ratio of light intensity to biomass concentration in the reactor impacts fatty acid content, productivity and light yield. The specific light availability was specified as mol photons on the reactor surface per gram biomass in the reactor. This is the first publication based on experimental data showing the quantitative correlation between specific light availability, fatty acid content and biomass light yield for a lipid production process under nutrient deprivation and outdoor conditions. High specific light availability leads to high fatty acid contents. Lower specific light availability increases fatty acid productivity and biomass light yield. An average fatty acid productivity of 0.39 g L⁻¹ day⁻¹ for a 12 days batch process with a final fatty acid content of 44.6% [w/w] was achieved. Light yield of 0.4 g mol photons⁻¹ was obtained for the first 6 days of cultivation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.