Abstract
The paper discusses issues related to the choice of the optimal damping for a system with one and a half degrees of freedom - a pendulum with an elastic-movable suspension point in the presence of viscous friction. Maximization of the degree of stability of the system is taken as an optimization criterion characterizing the efficiency of damping oscillations. Two options for installing a damping device are discussed - either in the pendulum joint, or parallel to the elastic element. The analytical solution of the optimization problem is performed in each case, and it is accompanied by a visual graphic illustration. In addition, a comparison of two cases of damping is given on the basis of analysis of the maximum degree of stability and a conclusion about the advisability of using one or another option is made. The obtained results are of interest both in theoretical and practical terms, and the described plan for finding the optimal solution can also be applied to solving other optimization problems in systems with a non-integer number of degrees of freedom.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.