Abstract

Controlling the phase of light with a high efficiency and precision is essential for applications in imaging, tunable devices, and optical systems. Spatial light modulators (SLMs) based on liquid crystals (LCs) have been regarded as one of the best choices for the generation of phase profiles for the steering of light. The upper glass substrate has an unpatterned electrode for a common electrode, while the lower glass substrate has one-dimensional micro-patterned electrodes for controlling the single pixel level by the applied voltages. By applying different voltages to each electrode to create a sawtooth-shaped phase profile, the collimated input beam is deflected to the desired angle. To maximize the diffraction efficiency (DE) values, an advanced simulation method has been developed to find the optimized phase profile through the analysis of LC director distributions. The resulting diffraction patterns are investigated both computationally and experimentally, with a good agreement between the results obtained. Finally, the beam deflector (BD) system with an advanced driving algorithm has a high 1st order DE, about 60%, 37%, and 7.5% at 1°, 2.5°, and a maximum steering angle of 7.5°, respectively. The LC director distributions in relation to various diffraction angles are simulated and an experimental success in realizing enhanced DE for the beam steering device is presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.