Abstract
Xylanases have stimulated considerable interest due to their potential application in several industries, especially in the bioethanol sector. Since the vitality of this enzyme is undeniable, this research is focused on optimization of on-site xylanase production from Aspergillus niger (A. niger). This initiative could reduce the dependence of commercial xylanase. Central Composite Design (CCD) was implemented in the process of xylanase production optimization. Incubation temperature and medium pH were two parameters selected to statistically optimized using Response Surface Methodology (RSM) in order to improve the xylanase production. From the data analyzed by Design of Experiment (DoE), maximal xylanase production was predicted to produce under condition of 32.67 °C and pH 4.56 with desirability of 0.936. A validation test with triplicate was done to verify the predicted result. The maximum enzyme activity of 0.5638 U/mL was obtained from the validation test.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IOP Conference Series: Materials Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.