Abstract

A closed-loop on-site wastewater treatment system (OWT) was studied comprising steps of septic tank to remove organics (Biological Oxygen Demand (BOD)), biofiltration clarifier for biological removal of nitrogen (N), phosphorus (P) and BOD, reactive Polonite® filter for chemical adsorption and precipitation removal of dissolved P, and tidal flow constructed wetland (TFCW) sand filter for polishing the effluent to low P and N effluent Swedish standards. The field experimental data that have been used to optimize TFCW design in the numerical modelling using HYDRUS-2D coupled with and without PHREEQC indicated that the adsorption efficiency of the reactive Polonite® adsorbent was nearly double to that obtained in TFCW sand filters for PO4-P (95 %) and Total-P (85 %) removal in summer at a high temperature range (15.4–18.8 °C) and pH range (9.9–10.8). The weaker PO4-P (53 %) and Total-P (25 %) removal efficiency in winter was due to a low temperature (1.5–8.1 °C) and low pH (7.2–7.9). This decrease in pH was attributed to salinity in the domestic wastewater and dilution of rainwater. Modelling results revealed that the transport mechanisms and rate of P adsorption kinetics in the TFCW sand filters enhanced with calcium and iron flow from chemical dissolution in the preceding Polonite® adsorbent was increased with the increase in temperature. However, the P adsorption was less sensitive at high ferrihydrite (Fe(OH)3) dose, suggesting limited effects of cations dissolution and abundance of metal oxides and hydroxide ions at the mineral surface for anions exchange with phosphate for surface complexation. The strategy of combining field data and modelling provided valuable insights for assessing adaptability and optimizing TFCW design under variable fluxes and scenario effects of insulated/uninsulated and dilution by rainwater in cold-climate regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.