Abstract

Abstract The neon soft X-ray (SXR) emission characteristics of a Fast Miniature Plasma Focus (FMPF-3) device have been investigated. The FMPF-3 device used for our experiment is of sub-kilojoule energy capacity, which is an order of magnitude lesser than the other well established plasma focus devices. The influence of different geometrical parameters of the anode and the pressure of the filling gas on the SXR emission was investigated to optimize the neon SXR yield and thereby make it a potential source for X-ray lithography. The SXR signal, solely from the desired, characteristic spectral range (900–1600) eV was selectively extracted and acquired using appropriate X-ray absorption filters on diode X-ray spectrometer. It was found that the neon SXR emission from 17 mm long cylindrical anode, which produced best neutron yields, was rather poor, in a very narrow pressure range and that too at low operating pressure. With decrease in the length of cylindrical anode, the optimum operating pressure shifts to higher pressure side, the working pressure range widens and the SXR yield also increases until the anode length is reduced to 12 mm, after which, the SXR yield and working pressure range start to degrade. The highest neon SXR yield of 1.1 J/shot, corresponding to a wall plug efficiency of 0.57%, was obtained for 12 mm long cylindrical anode. The tapered anodes with different length were also designed and tested, but they did not show any significant improvement in neon SXR yield.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call