Abstract

This paper reports on the enhancement of fluorescence that can result from the proximity of fluorophores to metallic nanoparticles (NPs). This plasmonic enhancement, which is a result of the localized surface plasmon resonance at the metal surface, can be exploited to improve the signal obtained from optical biochips and thereby lower the limits of detection. There are two distinct enhancement effects: an increase in the excitation of the fluorophore and an increase in its quantum efficiency. This study focuses on the first of these effects where the maximum enhancement occurs when the NP plasmon resonance wavelength coincides with the fluorophore absorption band. In this case, the excitation enhancement is proportional to the square of the amplitude of the electric field. The scale of the enhancement depends on many parameters, such as NP size and shape, metal type, and NP–fluorophore separation. A model system consisting of spherical gold/silver alloy NPs, surrounded by a silica spacer shell, to which is attached a fluorescent ruthenium dye, was chosen and the dependence of the fluorescence enhancement on NP diameter was investigated. Theoretical calculations, based on Mie theory, were carried out to predict the maximum possible enhancement factor for spherical NPs with a fixed composition and a range of diameters. Spherical NPs of the same composition were fabricated by chemical preparation techniques. The NPs were coated with a thin silica shell to overcome quenching effects and the dye was attached to the shell.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.