Abstract

The optimization of product or process quality profoundly influences a manufacturer. Most studies have focused primarily on optimizing a quantitative (or qualitative) quality response, while others have concentrated on optimizing multiple quantitative quality responses. However, optimizing multiple responses involving both qualitative and quantitative characteristics have scarcely been mentioned, largely owing to the inability to directly apply conventional optimization techniques. In this study, we present a novel approach based on artificial neural networks (ANNs) to simultaneously optimize multiple responses including both qualitative and quantitative quality characteristics. Two neural networks are constructed: one for determining the ideal parameter settings and the other for estimating the values of the multiple quality characteristics. In addition, a numerical example from an ion implantation process employed by a Taiwan IC fabrication manufacturer demonstrates the proposed approach’s effectiveness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.