Abstract

The scheme of the data acquisition (DAQ) architecture in High Energy Physics (HEP) experiments consist of data transport from the front-end electronics (FEE) of the online detectors to the readout units (RU), which perform online processing of the data, and then to the data storage for offline analysis. With major upgrades of the Large Hadron Collider (LHC) experiments at CERN, the data transmission rates in the DAQ systems are expected to reach a few TB/sec within the next few years. These high rates are normally associated with the increase in the high-frequency losses, which lead to distortion in the detected signal and degradation of signal integrity. To address this, we have developed an optimization technique of the multi-gigabit transceiver (MGT) and implemented it on the state-of-the-art 20 nm Arria-10 FPGA manufactured by Intel Inc. The setup has been validated for three available high-speed data transmission protocols, namely, GBT, TTC-PON and 10 Gbps Ethernet. The improvement in the signal integrity is gauged by two metrics, the Bit Error Rate (BER) and the Eye Diagram. It is observed that the technique improves the signal integrity and reduces BER. The test results and the improvements in the metrics of signal integrity for different link speeds are presented and discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call