Abstract

Fabrication of silver nanoparticles-loaded chitosan-polylactic acid based biofilms was successfully employed for investigating the optimal of mechanical properties (i.e. tensile strength and elongation at break) of biofilms using central composite design (CCD), response surface methodology (RSM). In this study, only two factors that influences the biofilm mechanical properties were selected namely concentration of polyethelene glycol 400 (PEG) and percentage volume of polylactic acid (PLA)/chitosan. Analysis of results was performed by using response surface methodology (RSM) to avoid the traditional one-factor-at-a-time experiments. Common statistical tools such as analysis of variance (ANOVA) and response surface plot were used to determine the optimal tensile strength and elongation at break responses. Central composite design (CCD) builds a response surface for mechanical properties of biofilms optimization. From the results of statistical analysis, it could be concluded that the optimal conditions for mechanical properties of biofilms were 7.93% w/w concentration of polyethylene glycol (PEG) and 28.79%/71.21% percentage volume of polylactic acid (PLA)/chitosan. At this optimum stage, 7.99 MPa of tensile strength and 32.6 % elongation at break were obtained. Then, results of verification process have shown that the percentage errors are 2.08% for tensile strength and 3.89% elongation at break, respectively.

Highlights

  • Fabrication of silver nanoparticles-loaded chitosan-polylactic acid based biofilms was successfully employed for investigating the optimal of mechanical properties of biofilms using central composite design (CCD), response surface methodology (RSM)

  • From the results of statistical analysis, it could be concluded that the optimal conditions for mechanical properties of biofilms were 7.93% w/w concentration of polyethylene glycol (PEG) and 28.79%/71.21% percentage volume of polylactic acid (PLA)/chitosan

  • Chitosan flakes from crab shells were purchased from Fisher Scientific, polyethylene glycol (PEG) 400, polylactic acid (PLA), chloroform and acetic acid were supplied from Sigma Aldrich

Read more

Summary

Introduction

Fabrication of silver nanoparticles-loaded chitosan-polylactic acid based biofilms was successfully employed for investigating the optimal of mechanical properties (i.e. tensile strength and elongation at break) of biofilms using central composite design (CCD), response surface methodology (RSM). From the results of statistical analysis, it could be concluded that the optimal conditions for mechanical properties of biofilms were 7.93% w/w concentration of polyethylene glycol (PEG) and 28.79%/71.21% percentage volume of polylactic acid (PLA)/chitosan. At this optimum stage, 7.99 MPa of tensile strength and 32.6 % elongation at break were obtained. RSM approach was applied where a set of experiment was designed using CCD

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call