Abstract
Abstract The goal of Lennard-Jones (LJ) clusters optimization is to find the minimum value of the potential function of a cluster and thereby determine the stable configuration of the cluster. It is essentially a completely inseparable multimodal global optimization problem, and using the traditional particle swarm algorithm to solve it often results in local convergence, which means that the solution accuracy of the algorithm is not high. Thus, in this study, we develop a LJ algorithm using a particle swarm optimization (PSO) method and a physical approach to improve the solution accuracy. In this quasi-physical strategy (QPS), the particle swarm algorithm is used to simulate the real atomic structure and incorporates the interatomic force to construct a convergence model so that the algorithm performs well in both global and local space. The potential energy functions of a variety of LJ cluster systems are selected as test functions, and the improved PSO algorithm (QPS-PSO) is analyzed and compared with a competitive swarm optimizer, cooperative coevolution PSO, and differential-group cooperative coevolution, variable-length PSO for feature selection, heterogeneous comprehensive learning PSO, ensemble PSO and cooperative coevolution with differential optimization. The results show that the PSO algorithm for LJ clusters using the proposed QPS has noticeably superior solution accuracy, especially in high-dimensional spaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.