Abstract
A variety of stationary-phase materials are currently available for the chromatographic purification of biomolecules. However, the effect of various resin characteristics on the performance of displacement chromatography has not been studied in depth. In Part I, a novel iterative scheme was presented for the rapid optimization of displacement separations in ion-exchange systems. In this article, the optimization scheme is employed to identify the optimum operating conditions for displacement separations on various ion-exchange resin materials. In addition, the effect of different classes of separation problems (e.g., diverging, converging or parallel affinity lines) on the performance of displacement separations is also presented. The solid film linear driving force model is employed in concert with the Steric Mass Action isotherm to describe the chromatographic behavior in these systems. The results presented in this article provide insight into the effects of resin capacity and efficiency as well as the type of separation problem on the performance of various ion-exchange displacement systems.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have