Abstract
The main objective of this research is to develop a sustainable stock quantitative investing model based on Machine Learning and Economic Value-Added techniques for optimizing investment strategies. Quantitative stock selection and algorithmic trading are the two features of the model. Principal component analysis and economic value-added criteria are used in quantitative stock model for efficiently stocks selection, which may repeatedly select valuable stocks. Machine learning techniques such as Moving Average Convergence, Stochastic Indicators and Long-Short Term Memory are used in algorithmic trading. One of the first attempts, the Economic Value-Added indicators are used to appraise stocks in this study. Furthermore, the application of EVA in stock selection is exposed. Illustration of the proposed model has been done on United States stock market and finding shows that Long-Short Term Memory (LSTM) networks can more accurately forecast future stock values. The proposed strategy is feasible in all market situations, with a return that is significantly larger than the market return. As a result, the proposed approach can not only assist the market in returning to rational investing, but also assist investors in obtaining significant returns that are both realistic and valuable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.