Abstract

This research presents a novel design in wavy channel heat sinks, crucial for the thermal management of electronic devices. The design features secondary branches with progressively decreasing spacing and a reduced channel height, enhancing flow mixing and uniform temperature distribution. The novelty of this research lies in the integration of a wavy channel, an innovative secondary branch pattern, lowered channel height, and optimized branch angles and widths. The study examines the impact of the design parameters across flow rates (0.004–0.014 kg/s) under a constant heat flux of 5.17 W/cm2. Key findings reveal that a 90-degree branch angle with a 1 mm width achieves a 5.27% temperature reduction compared to the basic wavy channel heat sinks, reducing the surface temperature by 1.4 °C over 45-degree configurations. Additionally, 45-degree and 90-degree configurations with a 1.5 mm width show pressure drop increases of 12.13% and 20.60%, respectively. Using factorial designs and response optimization, the study identifies an optimal configuration at a 90-degree angle and 2 mm width for a flow rate of 0.008 kg/s, balancing heat transfer enhancement, and hydraulic performance. This design marks a significant advancement in efficient and effective cooling technologies for electronic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call