Abstract

Chickpea is a major protein source in low socio-economic classes and cultivated in marginal soil without fertilizer or irrigation. As a result of its root nodule formation capacity chickpea can directly use atmospheric nitrogen. Chickpea is recalcitrant to stable transformation, particularly root regeneration efficiency of chickpea is low. The composite plant-based system with a non-transformed shoot and transformed root is particularly important for root biologist and this approach has already been used successfully for root nodule symbiosis, arbuscular mycorrhizal symbiosis, and other root-related studies. Use of fluorescent marker-based approach can accurately identify the transformed root from its non-transgenic counterpart. RNAi-based gene knockout, overexpression of genes, promoter GUS analysis to understand tissue specific expression and localization of protein can be achieved using the hairy root-based system. We have already published a hairy root-based transformation and composite plant regeneration protocol of chickpea. Here we are describing the recent modification that we have made to increase the transformation frequency and nodule morphology. Further, we have developed a pouch based artificial system, large number of plants can be scored for its nodule developmental phenotype, by using this system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.