Abstract

AbstractCurrently, in multitrain DC subway system, abnormal increase of rail potential (RP) and stray current (SC) has seriously threatened the safe operation of the system. Over voltage protection device (OVPD) is generally chosen to control the RP, but its action process may increase the amplitude of SC seriously. Here, the grounding resistance of OVPD is optimized by a proposed multi‐objective decomposition algorithm based on differential evolution (MOEA/D‐DE) to suppress the rise of RP and SC synergistically. Firstly, the simulation model of the DC subway system with multitrain is built, the power flow calculation is conducted, and the dynamic RP and leakage current (LC) at the location of traction substation are obtained. Secondly, the double objective optimization model of maximum RP and LC is established and solved by MOEA/D‐DE. Finally, the effectiveness of the proposed method is verified based on the data of Guangzhou Metro Line 2. Results show that the SC of the system can be controlled effectively with OVPD grounding mode after optimization, and integrated control of RP and SC can be accomplished.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call