Abstract
Cryogenic treatment (CT) is a relatively new field, which has emerged during the last three decades of the twentieth century. However, its impact on material shaping and making tool life, and enhancement of their mechanical properties are quite remarkable. The selection of appropriate process parameters for CT is essential for cost reduction and optimum productivity. This study focuses on the influence of key parameters of CT cycles (i.e., soaking temperature and duration) on the friction and wear behavior of AISI H13 hot die steel under dry sliding conditions against hardened and tempered AISI D3 cold work tool steel (counter face) at varying sliding speeds and loads. Mathematical models have been developed for wear rate, the average coefficient of friction, and maximum contact temperature using the Box-Cox methodology. The developed mathematical models have been validated by comparing with the experimental results. Moreover, the optimum values of the process parameter have been employed to maximize the output and validate the same by confirmation of the experiments. To the best of our knowledge, this is the first study that demonstrates the modeling and optimization of sliding friction and wear characteristics of AISI H13 under varied CT cycles.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have