Abstract

Focused ion beam (FIB) thinning of materials to electron transparency is now a routine procedure for preparation of specimens for transmission electron microscopy (TEM) of microelectronic materials and devices. The nano-scale structural damage, including implantation and amorphization due to this ion milling process has been well investigated and documented. In this paper, we discuss the micro-scale structural damage observed in copper/low-k materials and our efforts to minimize the extent of the damage without compromising the overall specimen preparation time.Figure 1 shows an area-specific cross-sectional specimen prepared from a copper/low-k via-chain test structure using the FIB-milling technique. The procedure involved mechanical thinning of a transverse wafer sliver followed by FIB-milling the area of interest to electron transparency according to conventional steps and conditions' using a liquid Ga+ ion source FIB system. The evidence of structural damage in terms of melting and/or sputtering of the metallization is visible at different areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call