Abstract

The effect of laser parameters on weld quality is a critical laboratory study before implementation of newly developed high-strength dual-phase steels in fabrication of auto-bodies. In present work, dual-phase steels having tensile strength of 980 MPa (DP980) were welded using different welding speeds by Yb-fiber laser source to fabricate similar material combinations laser-welded blanks (LWBs). The weld zone microhardness, microstructure, and formability of DP980 LWBs were compared with those of the DP600 and micro-alloyed interstitial free high-strength steel (IFHS) LWBs. It was found that the formation of soft zone at the outer side of the HAZ was responsible for significant reduction in formability of DP980 LWBs due to strain localization and premature failure. Hence, response surface methodology based on Box-Behnken design was implemented to establish a mathematical model which could correlate the influence of laser process parameters such as power, welding speed, and focal position on weld quality in terms of aspect ratio of fusion zone, width of the soft zone, and surface roughness of weld to improve formability. The model was successfully implemented to optimize the laser parameters, and approximately 13.58% improvement in Erichsen cup height was achieved due to complete weld penetration with simultaneous 67% reduction in soft zone width and 55% reduction in softening. However, the failure was still observed to occur in the soft zone propagating parallel to weld in radial direction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.