Abstract

The newly identified Sanghuangporus alpinus species of the Sanghuang mushroom genus has been found to possess significant medical benefits. However, the current artificial cultivation technology has not reached the requisite maturity. The response-surface methodology (RSM) was used to optimize the Sanghuangporus alpinus culture medium formulation and evaluate the functional activity of S. alpinus exopolysaccharides. First, a single-factor experiment was conducted to screen for optimal carbon and nitrogen sources for S. alpinus. Then, using Box–Behnken’s central composite design, a response-surface experiment was conducted to determine optimal culture parameters. Finally, the rationality of those parameters was assessed in a shaking flask experiment. The optimal culture parameters, determined through regression analysis, were 20.20 ± 0.17 g/L fructose (carbon source), 7.29 ± 0.10 g/L yeast extract (nitrogen source), and 0.99 ± 0.01 g/L dandelion. With optimization, the S. alpinus yield increased to 12.79 ± 1.41 g/L, twice that obtained from the initial culture medium. The S. alpinus exopolysaccharide exhibited an excellent antioxidant capacity, with the strongest scavenging effect noted on ABTS free radicals (lowest half-inhibitory concentration: 0.039 mg/mL). Additionally, this exopolysaccharide effectively inhibited various cancer cells, exhibiting the strongest activity against human glioma cells U251 (half-inhibitory concentration: 0.91 mg/mL). The RSM used to optimize the fermentation culture parameters of S. alpinus significantly increased the mycelial biomass. The improvement of Sanghuangporus alpinus yield through liquid fermentation and optimizing the fermentation medium could fill the existing gap in the cultivation of Sanghuangporus alpinus, as well as provide valuable data for the large-scale production of S. alpinus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call