Abstract

Extrinsic resistance due to contacts and nonabrupt lateral extension doping profile can become a performance-limiter in ultrathin body double-gate FETs (DGFET). In this paper, two-dimensional device simulations are used to study and optimize the extrinsic resistance in a sub-20 nm gate length DGFET. For a given lateral doping gradient, the extension doping needs to be offset from the gate edge by an amount called the underlap. The current drive, and hence transistor performance, is maximized when the underlap is chosen in such a way as to balance the impact of nonabrupt doping on the short channel effects and series resistance. This optimization depends upon the maximum allowed off-state subthreshold leakage current and the electrostatic integrity of the device structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.