Abstract
BackgroundProtein tyrosine phosphatase expressed in insulin-sensitive tissues (such as liver, muscle, and adipose tissue) has a key role in the regulation of insulin signaling and pathway activation, making protein tyrosine phosphatase a promising target for the treatment of type 2 diabetes mellitus and obesity and response surface methodology (RSM) is an effective statistical technique for optimizing complex processes using a multi-variant approach.MethodsIn this study, Zea mays L. (Purple corn kernel, PCK) and its constituents were investigated for protein tyrosine phosphatase 1β (PTP1β) inhibitory activity including enzyme kinetic study and to improve total yields of anthocyanins and polyphenols, four extraction parameters, including temperature, time, solid-liquid ratio, and solvent volume, were optimized by RSM.ResultsIsolation of seven polyphenols and five anthocyanins was achieved by PTP1β assay. Among them, cyanidin-3-(6”malonylglucoside) and 3′-methoxyhirsutrin showed the highest PTP1β inhibition with IC50 values of 54.06 and 64.04 μM, respectively and 4.52 mg gallic acid equivalent/g (GAE/g) of total polyphenol content (TPC) and 43.02 mg cyanidin-3-glucoside equivalent/100 g (C3GE/100g) of total anthocyanin content (TAC) were extracted at 40 °C for 8 h with a 33 % solid-liquid ratio and a 1:15 solvent volume. Yields were similar to predictions of 4.58 mg GAE/g of TPC and 42.28 mg C3GE/100 g of TAC.ConclusionThese results indicated that PCK and 3′-methoxyhirsutrin and cyanidin-3-(6”malonylglucoside) might be active natural compounds and could be apply by optimizing of extraction process using response surface methodology.
Highlights
Protein tyrosine phosphatase expressed in insulin-sensitive tissues has a key role in the regulation of insulin signaling and pathway activation, making protein tyrosine phosphatase a promising target for the treatment of type 2 diabetes mellitus and obesity and response surface methodology (RSM) is an effective statistical technique for optimizing complex processes using a multi-variant approach
Phenolic constituents were isolated from a 35 % ethanol extract of purple corn kernel (PCK)
The results showed that the inhibition of protein tyrosine phosphatase 1β (PTP1β) by compound 11 was mixed
Summary
Protein tyrosine phosphatase expressed in insulin-sensitive tissues (such as liver, muscle, and adipose tissue) has a key role in the regulation of insulin signaling and pathway activation, making protein tyrosine phosphatase a promising target for the treatment of type 2 diabetes mellitus and obesity and response surface methodology (RSM) is an effective statistical technique for optimizing complex processes using a multi-variant approach. Anthocyanin (ATC), a source of color in PC, is approved in Japan as an extract, and is listed in the “Existing Food Additive List” as PC color. Numerous studies have identified and characterized the possible bioactivities of phenolic compounds from PC. Previous phytochemical investigations of PC studied cyanidin-3-glucoside, pelargonidin-3-glucoside, and peonidin-3-glu-coside by HPLC-MS [4]. Prior work by Pascual-Teresa et al identified cyanidin-3-(6malon-glucoside), pelargonidin-3-(6-malon-glucoside) and peonidin-3-(6-malon-glucoside) [5]. Phenolic constituents were isolated from a 35 % ethanol extract of purple corn kernel (PCK). Hirstrin, 3′-methoxyhirstrin, cyanidin-3-(6”malonylglucoside), ferulic acid, p-hydroxycinnamic acid, and 2,4,6-trihydroxybenzoic acid, exhibited strong inhibitory effects on aldose reductase and galactitol accumulation in rat lenses and erythrocytes, and on mesangial fibrosis and inflammation, with the added effects of slowed diabetes-associated glomerulosclerosis and displayed anti-diabetic [6,7,8]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have