Abstract
AbstractTo improve the effectiveness of flood disaster relief operations, by ensuring timely and accurate delivery of urgently needed supplies to affected areas, this study focuses on the problem of emergency material distribution during floods. With the objective of minimizing the overall delivery time of emergency materials, we propose a coordinated optimization model that integrates trucks, speedboats, and drones for effective distribution of emergency supplies in flood‐affected areas. To solve this optimization problem, we introduce an improved adaptive large neighborhood search (IALNS) algorithm, which builds on the traditional ALNS framework through refined tuning of deletion and insertion operators. Comparative analyses are conducted with a genetic algorithm, simulated annealing algorithm, and tabu search algorithm. The results reveal that the average performance gap of IALNS compared to these methods is 91.13%, 152.72%, and 16.92%, respectively. The experimental results demonstrate that the efficiency of the proposed model and algorithm in addressing the emergency supply distribution problem during flood disasters, highlighting the superior performance of IALNS. This research contributes to enhancing disaster response strategies, ultimately leading to improved outcomes for flood‐affected communities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.