Abstract

The measurements of micro/nanoforces are of great importance in both science and engineering. We developed a traceable system for micro/nanoforces based on electrostatic force using two electrodes. Noises (creep, ground vibration, and airflow) are one of the limitations for force resolution. The forces are distorted by noise and cannot be measured accurately. Although ABA method can be used to eliminate linear creep, it is invalid for nonlinear noise. In this paper, a new method known as the Newton interpolation method (NIM) has been adopted in capacitance gradient and the calibration of cantilever stiffness to reduce the effect of nonlinear noise. The results show that the capacitance gradient, with a relative standard deviation of 0.004%, is stable and has good repeatability. The stiffness of cantilever was measured using electrostatic force. The typical value of stiffness ranged from 5.1 to 48 N/m. The relative standard deviation was small, i.e., less than 0.6% owing to Newton interpolation method. These results show that our system is very stable and repeatable. This research may assist in the designing of force measurement systems based on electrostatic force.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call