Abstract

Atomic force microscope (AFM) is widely used to measure nanoforce in the analysis of nanomechanical and biomechanical properties. As the critical factor in the nanoforce measurement, the stiffness of the AFM cantilever must be determined properly. In this paper, an accurate and SI-traceable calibration method is presented to obtain the stiffness of the AFM cantilever in the normal direction. The calibration system consists of a homemade AFM head and an ultra-precision electromagnetic balance. The calibration is based on the Hooke's law i.e. the stiffness is equal to the force divided by the deflection of the cantilever. With this system, three kinds of cantilevers were calibrated. The relative standard deviation is better than 1%. The results of these experiments showed good accuracy and repeatability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.