Abstract

Sustainable chemical engineering through demand side management (DSM) and renewable feedstock integration e.g. in biorefineries are key to optimizing the use of fluctuating energy resources and minimizing environmental impact while conserving resources. This contribution presents the results of the economic evaluation of integrating DSM into biofuel biorefineries through a dynamic simulation approach. A previously developed decision support tool for DSM implementation was extended to describe the size of intermediate buffer tanks as a function of oversizing up- and downstream processes. Design optimization of the process cascade determined the oversizing that allows the optimal balance of operational cost reduction through flexibility and capital cost increase through oversizing. Scheduling optimization validated the results of the steady-state optimization and show that, by considering interactions between processes, buffer tank capacity can be reduced, while increasing DSM potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.