Abstract
AbstractMinimizing the emissions produced during the processing of biofuel, one aim is to reduce or completely replace the amount of the required fossil fuels used for internal process energy. For the transition of process energy from fossil to renewable energy sources, such as solar and wind, the energy demand of biomass processing must be adjustable to the fluctuating electricity supply. The flexible adjustment of a system's power demand to follow the current power generation is commonly referred to as demand side management (DSM). This contribution shows the results of a study on the implementation of DSM in biofuel biorefineries. By identifying reference concepts that could represent biofuel production plants, the specific mass and energy consumption for the individual process steps in these reference concepts was analyzed through a literature study. The annual throughput and energy consumption of process steps in biofuel production could then be calculated, enabling the identification of the most energy‐consuming process steps. Subsequently, possible flexible operating load ranges of the respective process steps in biofuel production were identified. These findings allowed an assessment of the potential for different process units of biorefinery systems concerning the quantitative adaptability of the electricity load – the theoretical DSM potential. An approximate theoretical DSM potential of 146 MW has been identified for biofuel production in Germany. This cumulated theoretical DSM potential in biofuel production was compared to that of other industrial processes, demonstrating the magnitude and importance of the implementation of DSM in biofuel production. © 2022 The Authors. Biofuels, Bioproducts and Biorefining published by Society of Industrial Chemistry and John Wiley & Sons Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.