Abstract

Dental studies evaluating μCT output often examine resolution as a parameter that affects the data, but many other factors can influence image quality. The objective of this paper is to present the issues involved with the optimization of μCT data acquisition and processing for two biomechanical animal models. The first model evaluates surface and volumetric changes in root structure after in vitro fatigue loading of dog incisors. The second evaluates the in vivo morphometric bone and tooth responses to application of orthodontic force in inbred and transgenic mice. This type of data required specific magnification and noise control μCT settings to segment and render objects with acceptable definition. The proposed procedures enabled high definition rendering of changes in tooth and bone morphology in orthodontic studies. They also allowed for the construction of solid models for finite element analyses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.