Abstract
A cost-based hybrid flowshop scheduling (CHFS) combines flow shop and job shop elements, with cost considerations as a key indicator. CHFS is a complex combinatorial optimization challenge encountered in real-world manufacturing and production environments. This paper investigates the optimization of a CHFS problem using the Teaching Learning-Based Optimization (TLBO) algorithm. Effective CHFS is crucial for achieving production balance, reducing costs, and improving customer satisfaction. The authors formulate the CHFS scheduling problem and propose applying the TLBO algorithm to minimize total costs, including labor, energy, maintenance, and delay expenses. The performance of the TLBO technique is evaluated through computational experiments on various CHFS problem instances. The results demonstrate the effectiveness of the TLBO algorithm, which achieved the best results in 42% of the test cases, surpassing other algorithms like the Grey Wolf Optimizer and Particle Swarm Optimization. Additionally, the TLBO algorithm had the highest average performance ranking across the comparative algorithms. The study highlights the potential of the TLBO algorithm as an efficient optimization tool for complex manufacturing scheduling problems.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have