Abstract

The CdZnTe vertical Bridgman single crystal process with accelerated crucible rotation technique (ACRT) has been simulated. Effects have been investigated of the ACRT wave parameters on the solid-liquid interface concavity and the solute segregation of the crystal. The results show that ACRT can result in the increase of both the solid-liquid interface concavity and the temperature gradient of the melt in the front of the solid-liquid interface, of which the magnitude varies from small to many times when the ACRT wave parameters change. Of the ACRT wave parameters, the increase of the crucible maximum rotation rate can hardly improve the radial solute segregation of the crystal, but the variation of the crucible acceleration time, the keep time at the maximum rotation rate, and the crucible deceleration time can affect the solute segregation of the single crystal extraordinarily. With suitable wave parameters, ACRT greatly decreases the radial solute segregation of the crystal, and even makes it disappear completely. However, it increases both the axial solute segregation and the radial one notably with bad wave parameters. An excellent single crystal could be gotten, of which a majority part is with no segregation, with ACRT-Bridgman method by adjusting both the ACRT wave parameters and the crystal growth control parameters, such as the initial temperature of the melt, the temperature gradient, and the crucible withdrawal rate, etc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.