Abstract
Waste paper stands for the major biodegradable organic fraction of most of municipal solid waste. The potential of waste paper for glucose production was investigated in this current work. The pretreatment was accomplished by first subjecting waste paper to disintegration time (30 s), followed by ink removal of disintegrated waste paper using an deinking agent. Concentrated acid hydrolysis of waste paper with sulfuric acid was optimized to maximize glucose conversion. The concentrated acid hydrolysis conditions for waste paper (disintegrated time: 30 s, deinking agent loading : 15 ml) were optimized by using central composite design and response surface methodology. The optimization process employed a central composite design, where the investigated variables were acid concentration (60~80%), loading sulfuric acid (1~5 ml) and reaction time (1~5 h). All the tested variables were identified to have significant effects (p < 0.05) on glucose conversion. The optimum concentrated acid hydrolysis conditions were acid concentration of 70.8%, loading sulfuric acid of 3.2 ml and a reaction time of 3.6 h. This research of concentrated acid hydrolysis was a promising method to improve glucose conversion for waste paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.