Abstract

This paper describes a methodology for optimal seismic design of reinforced concrete 3D columns and bent caps (beams) of bridges. Design variables include compressive strength of concrete, geometry, as well as longitudinal and shear reinforcement of columns and beams. The optimization is performed to minimize the cost and CO2 emissions using the enhanced colliding bodies optimization (ECBO) algorithm. The trade-off between cost and CO2 emissions shows that in the design for minimizing CO2 emissions compared to the design based on the cost minimization, increasing 1.4 % in cost can decrease CO2 emissions by 6.1%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.