Abstract

Plant secondary metabolites have emerged as potential raw materials, which are used in the pharmaceutical, food, chemical, and cosmetic industries. Bacoside-A, a secondary metabolite produced by Bacopa monnieri, is known for its memory-facilitating properties. In recent years, various strategies have been developed to enhance biomass accumulation and synthesis of secondary compounds in cultures. In the present investigation, various factors affecting the production of biomass and bacoside-A in the cell suspension cultures of B. monnieri were optimized using the statistical experimental design approach. Preliminary screening by Plackett–Burman’s design revealed that among the tested factors, glucose, KNO3, KH2PO4, and inoculum density significantly influenced cell growth and bacoside-A production. Furthermore, using response surface methodology (RSM), glucose, KNO3, and KH2PO4 at a concentration of 5.67, 0.313, and 0.29%, respectively, and an inoculum density of 0.66% in basal MS medium were found to be optimal for cell growth and bacoside-A production. After optimization, the biomass yield increased about twofold (from 5.52 to 12.58 g L−1 fresh cell weight) and bacoside-A production about 1.7-fold (5.56 to 9.84 mg g−1 dry weight). The present study results show the successful application of RSM to enhance the production of biomass and accumulation of bacoside-A content in cell suspension cultures of B. monnieri.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.