Abstract

In recent years, the rising global demand for cheese, the high cost and limited supply of calf rennet, and consumer choices have increased research into new alternatives to animal or recombinant chymosins for cheese making. Plant proteases with caseinolytic activity (CA) and milk-clotting activity (MCA) have been proposed as alternatives for milk clotting to obtain artisanal cheeses with new organoleptic properties. They have been named vegetable rennets (vrennets). The aim of this study was to evaluate the performance of two Solanum tuberosum aspartic proteases (StAP1 and StAP3) as vrennets for cheese making and to obtain a statistical model that could predict and optimize their enzymatic activity. To optimize the CA and MCA activities, a response surface methodology was used. Maximum values of CA and MCA for both enzymes were found at pH 5.0 and 30-35 °C. Analysis of the degradation of casein subunits showed that it is possible to tune the specificity of both enzymes by changing the pH. At pH 6.5, the αS - and β- subunit degradation is reduced while conserving a significant MCA. The statistical models obtained in this work showed that StAP1 and StAP3 exert CA and MCA under pH and temperature conditions compatible with those used for cheese making. The casein subunit degradation percentages obtained also allowed us to select the best conditions for the degradation of the κ-casein subunit by StAPs. These results suggest that StAP1 and StAP3 are good candidates as vrennets for artisan cheese making. © 2023 Society of Chemical Industry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call