Abstract
It has been recently advocated that in large communication systems it is beneficial both for the users and for the network as a whole to store content closer to users. One particular implementation of such an approach is to co-locate caches with wireless base stations. In this paper we study geographically distributed caching of a fixed collection of files. We model cache placement with the help of stochastic geometry and optimize the allocation of storage capacity among files in order to minimize the cache miss probability. We consider both per cache capacity constraints as well as an average capacity constraint over all caches. The case of per cache capacity constraints can be efficiently solved using dynamic programming, whereas the case of the average constraint leads to a convex optimization problem. We demonstrate that the average constraint leads to significantly smaller cache miss probability. Finally, we suggest a simple LRU-based policy for geographically distributed caching and show that its performance is close to the optimal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.