Abstract
Although the advancements in automotive diesel engines in the last two decades have resulted in the possibility of achieving better performance with lower pollutant emissions and fuel consumption, the increased complexity of the system and the high number of control parameters require the solution of optimization problems of high dimensionality. It is of crucial importance to identify suitable methodologies, which allow achieving the full exploitation of the potential of these powertrains. In this paper, an original methodology for optimizing the latest generation of common rail automotive diesel engines has been presented.Random optimization methods along with surrogate models were firstly used to generate a population of engine calibrations, which then served as an initial population to a specifically conceived Genetic Algorithm (GA) based optimizer, which was finally applied on a real data set for a particular engine operating point. The results were compared with a calibration optimized using a traditional local approach method. A simultaneous reduction of about 20% in NOX and 1% in Brake Specific Fuel Consumption was achieved, with no significant increase in other emissions. The methodology described in the paper has the potential to reduce the calibration time and effort by half, while obtaining better calibrations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.