Abstract

Time series prediction aims to control or recognize the behavior of the system based on the data in a certain period of time. One of the most widely used method in time series prediction is ARIMA (Autoregressive Integrated Moving Average). However, ARIMA has a weakness in determining the optimal model. firefly algorithm is used to optimize ARIMA model (p, d, q). by finding the smallest AIC (Akaike Information Criterion) value in determining the best ARIMA model. The data used in the study are daily stock data JCI period January 2013 until August 2016 and data of foreign tourist visits to Indonesia period January 1988 to November 2017.Based on testing, for JCI data, obtained predicted results with Box-Jenkins ARIMA model produces RMSE 49.72, whereas the prediction with the ARIMA Optimization model yielded RMSE 49.48. For the data of Foreign Tourist Visits, the predicted results with the Box-Jenkins ARIMA model resulted in RMSE 46088.9, whereas the predicted results with ARIMA optimization resulted in RMSE 44678.4. From these results it can be concluded that the optimization of ARIMA model with Firefly Algorithm produces better forecasting model than ARIMA model without Optimization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.