Abstract

This study seeks to improve the utilization of compressed air towards a faster fuel jettisoning, to increase the survival rate of passengers in the event of an accident or aborted takeoffs by augmenting the already existing means of dumping fuel with no considerable increase in overall weight. The aircraft fuel dump sub-system was isolated, this process was achieved with the aid of the venturi effect. The engine compressor marks the start of the aircraft fuel dump sub-system while an exterior nozzle for displacing the fuel marks its end. This system achieved jettisoning through bled-off air from the compressor, passing through a converging-diverging nozzle (primary supersonic nozzle), thereby creating a vacuum in the mixing chamber. A jet which provides a direct connection between the fuel tank and the mixing chamber sucks fuel from the tank, where bypassed air from the compressor expels the sucked air in fine particles. After running the simulation, the mass flow rate was computed. The compressed air inlet has a mass flow rate of 58.5193(Kg/S), the kerosene inlet 1.2385(Kg/S) while the outlet has a relative value of-59.6541(Kg/S).This study seeks to improve the utilization of compressed air towards a faster fuel jettisoning, to increase the survival rate of passengers in the event of an accident or aborted takeoffs by augmenting the already existing means of dumping fuel with no considerable increase in overall weight. The aircraft fuel dump sub-system was isolated, this process was achieved with the aid of the venturi effect. The engine compressor marks the start of the aircraft fuel dump sub-system while an exterior nozzle for displacing the fuel marks its end. This system achieved jettisoning through bled-off air from the compressor, passing through a converging-diverging nozzle (primary supersonic nozzle), thereby creating a vacuum in the mixing chamber. A jet that provides a direct connection between the fuel tank and the mixing chamber sucks fuel from the tank, where bypassed air from the compressor expels the sucked air in fine particles. After running the simulation, the mass flow rate was computed. The compressed air inlet has a mass flow rate of 58.5193(Kg/s), and the kerosene inlet 1.2385(kg/s) while the outlet has a relative value of -59.6541(kg/s).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.