Abstract

A novel extraction technique is proposed in which the Multiple Headspace Extraction (MHE) approach is used in conjunction with Headspace Sorptive Extraction (HSSE) and Gas Chromatography-Mass Spectrometry (GC–MS) detection. The extraction method was developed to determine volatile compounds in macroalgae. Optimization of the extraction parameters was carried out using design of experiments to identify factors that affect the extraction: extraction time, temperature, twister length and amount of sample. The results of the optimization led to an extraction of 2 g of sample using a 20 mm Twister® at 66 °C for 180 min. The progression constants (β) were calculated for 43 volatile compounds, 29 of which could be quantified using the method. Linearity was attained with a determination coefficient higher than 0.99 for all studied compounds. Inter-day and inter-twister precisions ranged from 0.22% to 19.01% and from 0.69% to 14.76% respectively, and values below 10% were obtained for the majority of compounds. LOD and LOQ values ranged from the values obtained for diethyl succinate (0.012 μg/L and 0.088 μg/L, respectively) and those obtained for dimethyl sulfide (5.544 μg/L and 40.286 μg/L, respectively). However, for the majority of compounds values obtained were below 1 μg/L (LOD) and 5 μg/L (LOQ). Compounds such as ethyl acetate, hexanal, heptadecane, 2-hexenal, 6-methyl-5-hepten-2-one, dimethyl sulfide, benzyl alcohol, beta ionone, or beta cyclocitral, among others were correctly determined in three species of macroalgae: Ulva sp., Gracillaria sp. and Enteromorpha sp.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call