Abstract

The highly specific and highly sensitive ELISA (enzyme linked immunosorbent assay) technique is the most commonly used method for immunological diagnostics in general. In combination with protein microarrays and their ability to allow performing thousands of experiments in parallel, a promising tool for global analytical approaches with reduced consumption of time, analytes, and reagents is given. In this study a protein microarray-based sandwich-ELISA for human interferon-gamma (hINF-gamma) is established. In consideration of the immense importance of the surface chemistry, a new black nitrocellulose matrix that generates very high signal-to-noise ratios (SNR) and a very low autofluorescence was tested and optimized as microarray substrate. A validation of the applicability of the system was performed with a comparison to different commercially available systems. Experimental results show that the microarray-based ELISA is faster and easier to perform and shows a lower limit of detection (LOD) than a comparable system in a 96-well plate. The spotted slides with the capture antibody can be stored up to 1 month with no significant loss of signal intensity. A second model system with immobilized His-tagged restriction enzyme EcoRV and an anti-His antibody shows in coincidence the good applicability of the black nitrocellulose membrane and no cross-reactivity toward the ELISA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.