Abstract

The present paper investigates the reliable and robust optimum design of a higher-order sandwich composite beam under the effect of uncertainty in material properties. The sandwich beam is modeled using the extended higher-order sandwich panel theory. The optimization approaches employed in this work are reliability-based design optimization, robust design optimization, and a hybrid reliability-based robust design optimization. The efficiency of the optimization process is enhanced by using a novel time domain spectral element method-based polynomial chaos surrogate model. The performance of the surrogate model is further improved by using Sobol indices based sensitivity analysis. The optimization procedure is performed using an accelerated particle swarm optimization. The numerical results of the reliable and robust optimal design are presented for both the soft and stiff core sandwich beam. Furthermore, the effect of load density and allowable deflection on the optimal design is also examined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.