Abstract

Reliability-based robust design optimization deals with two objectives of structural design methodologies subject to various uncertainties: reliability-based design and robust design. A reliability-based design optimization deals with the probability of failure, while a robust design optimization minimizes the product quality loss. In general, the product quality loss is described by using the first two statistical moments: mean and standard deviation. In this paper, a performance moment integration (PMI) method is proposed by using numerical integration scheme for output response to estimate the product quality loss. For the reliability part of the reliability-based robust design optimization, the performance measure approach (PMA) and its numerical method, hybrid-mean value (HMV) method, are used. New formulations of reliability-based robust design optimization are presented for three different types of robust objectives, such as smaller-the-better, larger-the-better, and nominal-the-better types. Examples are used to demonstrate the effectiveness of reliability-based robust design optimization using the proposed PMI method for different types of robust objective.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.