Abstract

Human glial cell line-derived neurotrophic factor (hGDNF) is the most potent dopaminergic factor described so far, and it is therefore considered a promising drug for Parkinson's disease (PD) treatment. However, the production of therapeutic proteins with a high degree of purity and a specific glycosylation pattern is a major challenge that hinders its commercialization. Although a variety of systems can be used for protein production, only a small number of them are suitable to produce clinical-grade proteins. Specifically, the baby hamster kidney cell line (BHK-21) has shown to be an effective system for the expression of high levels of hGDNF, with appropriate post-translational modifications and protein folding. This system, which is based on the electroporation of BHK-21 cells using a Semliki Forest virus (SFV) as expression vector, induces a strong shut-off of host cell protein synthesis that simplify the purification process. However, SFV vector exhibits a temperature-dependent cytopathic effect on host cells, which could limit hGDNF expression. The aim of this study was to improve the expression and purification of hGDNF using a biphasic temperature cultivation protocol that would decrease the cytopathic effect induced by SFV. Here we show that an increase in the temperature from 33°C to 37°C during the “shut-off period”, produced a significant improvement in cell survival and hGDNF expression. In consonance, this protocol led to the production of almost 3-fold more hGDNF when compared to the previously described methods. Therefore, a “recovery period” at 37°C before cells are exposed at 33°C is crucial to maintain cell viability and increase hGDNF expression. The protocol described constitutes an efficient and highly scalable method to produce highly pure hGDNF.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call