Abstract

The material and ply angles of a fiber-reinforced plastic (FRP) rotor blade of a helicopter are optimized using a genetic algorithm (GA) with local search. The variation of the structural stiffness with material and ply angle is investigated. The aim of the optimization is to find an optimal stacking sequence that minimizes twist deformation. An optimum rotor blade is obtained using the ply angles as variables; failure, natural frequency, and minimum moment of inertia are used to constrain the optimization. The GA is employed as an optimization tool. A simplified local search is implemented in the final stage of optimization to reduce the searching time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call