Abstract
In this paper, a study on optimum design methodology of a section structure of a composite material rotor blade using genetic algorithm is conducted, in order to calculate repetitive optimum design, analysis of strength, fatigue and vibration on blade section. In the analysis, the minimum mass of the rotor blade was defined as objective function; stress damage index, center of mass on blade section and fatigue life of blade were set as constraints. By applying genetic algorithm, laminate angle and thickness of skin, thickness, location and width of torsion box were established as design variables; the optimum design methodology on section structure of the composite material rotor blade was validated. The integrated design program of the section structure of the composite material rotor blade based on this study deals with designing the optimal rotor blade section which meets the design load and constraints given by the random position of rotor blade. By using blade’s section design variables derived from this, it can be facilitated for basic information on detailed design of rotor blade.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.