Abstract

Conventional working fluids (refrigerants) are being phased out worldwide to combat with the twin menace of ozone layer depletion and global warming and natural refrigerants are fast gaining favour lately. Single stage and multi stage refrigeration systems fail to widen the gap between heat source and heat sink temperatures required in many industrial applications requiring simultaneous heating and cooling and cascaded systems appear to be the best alternative. Modest research has been done in cascaded systems based on natural refrigerants thereby offering good potential for research. In this paper, a cascaded system for simultaneous heating and cooling (refrigeration and heat pump system) with a carbon dioxide based HT cycle and propane based LT cycle for simultaneous refrigeration and heating applications has been analyzed. To facilitate prediction of optimum performance parameters, performance trends with variation in the design parameters and operating variables have been presented in this article. Relevant expressions have been developed to serve as guidelines to the user for selecting appropriate design parameters like intermediate temperature so that the system yields optimum performance. Independently developed property codes have been employed for both carbon dioxide and propane for higher accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.