Abstract

The future development of personalized nuclear medicine relies on the availability of novel medical radionuclides. In particular, radiometals are attracting considerable interest since they can be used to label both proteins and peptides. Among them, the β+-emitter 68Ga is widely used in nuclear medicine for positron emission tomography (PET). It is used in theranostics as the diagnostic partner of the therapeutic β−-emitters 177Lu and 90Y for the treatment of a wide range of diseases, including prostate cancer. Currently, 68Ga is usually obtained via 68Ge/68Ga generators. However, their availability, high price and limited produced radioactivity per elution are a major barrier for a wider use of the 68Ga-based diagnostic radiotracers. A promising solution is the production of 68Ga by means of proton irradiation of enriched 68Zn liquid or solid targets. Along this line, a research program is ongoing at the Bern medical cyclotron, equipped with a solid target station. In this paper, we report on the measurements of 68Ga, 67Ga and 66Ga production cross-sections using natural Zn and enriched 68Zn material, which served as the basis to perform optimized 68Ga production tests with enriched 68Zn solid targets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call