Abstract
IntroductionGallium-68 is an important radionuclide for positron emission tomography (PET) with steadily increasing applications of 68Ga-based radiopharmaceuticals for clinical use. Current 68Ga sources are primarily 68Ge/68Ga-generators, along with successful attempts of 68Ga production using a cyclotron. This study evaluated cyclotron 68Ga production and automated separation using expeditiously manufactured solid targets, demonstrates an order of magnitude improvement in yield compared to 68Ge/68Ga generators, and presents a convenient alternative to existing cyclotron production processes. A comparison of radiolabeling and preclinical PET imaging was performed with both cyclotron and generator produced 68Ga. Methods100 mg enriched 68Zn (99.3% 68Zn, 0.48% 67Zn, 0.1% 66Zn) pellets pressed on silver discs were bombarded for 20–75 min using 12.5 MeV proton beam energies and 10–30 μA currents. 68Ga was separated using an automated TRASIS AllinOne synthesizer employing AG 50W-X8 and UTEVA resins. Post-separation recovery of the 68Zn by electrolysis yielded 76.7 ± 4.3%. Radionuclidic purity of cyclotron-produced 68Ga was investigated with gamma spectroscopy using a HPGe-detector. Radiolabeling was investigated using the macrocyclic chelator DOTA and the bombesin-derived peptide NOTA-BBN2. PET imaging was performed using [68Ga]Ga-NOTA-BBN2 in a PC3 xenograft model. Results600 μA·min fresh and recycled quadruplet 68Zn target irradiations (n = 8) at 12.5 MeV and 30 μA yielded 13.9 ± 1.0 GBq 68Ga; 2200 μA·min irradiations (n = 3) yielded 37.5 ± 1.9 GBq 68Ga. HPGe analysis showed EOB 0.0074% and 0.0084% of total activity of 66Ga and 67Ga, respectively. Metal impurities were 0.06 ± 0.03 μg/GBq Zn, 0.13 ± 0.007 μg/GBq Fe, and 0.02 ± 0.01 μg/GBq Al for cyclotron 68Ga. Cyclotron and 68Ge/68Ga generator 68Ga respective DOTA and NOTA-BBN2 labeling incorporations were 99.4 ± 0.0% and 99.3 ± 0.2%, and 90.4 ± 1.5% and 93.0 ± 3.6% determined by radio-thin layer chromatography (radio-TLC). Preclinical PET imaging comparison between generator and cyclotron produced 68Ga showed identical radiotracer tumor uptake and biodistribution profiles in PC3 tumor bearing mice. ConclusionsCyclotron 68Ga production provides highly scalable production with equivalent or superior quality 68Ga to a 68Ge/68Ga generator, while providing identical biodistribution and tumor uptake profiles. Our described targetry is simpler and more cost-effective than existing liquid and solid targetry, enabling a turnkey production system for multi-facility distribution of cyclotron produced 68Ga. The manufacturing simplicity described has potential applications for producing other radiometals such as 44Sc. Advances in knowledge and implications for patient careOur cost-effective method of solid target 68Ga production can enhance 68Ga production capabilities to meet the high demand for 68Ga-radiopharmaceuticals for research and clinical use.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.