Abstract
The problems of the uneven strip shape and low efficiency of tea de-enzyming and carding machines in the working process were addressed by analyzing the trajectory of tea particles and establishing a force model diagram of tea particles in the pot slot. The three-dimensional geometric model of the tea de-enzyming and carding machine was drawn using UG software, and the simulation model of tea particles was established using EDEM software. The work efficiency of the tea de-enzyming and carding machine was improved, and the rate of broken tea was reduced using the EDEM software to simulate the movement of tea particles in the pot slot under different heights of the convex bar, pot slot angle of inclination, and number of slots. The average velocity and interaction force curve of tea particles were obtained. The influence of the number of slots, the inclination angle of the slot, and the height of the convex bar on the effect of tea into strips were verified using a scheme design based on the quadratic regression orthogonal combination rotation test, and experimental research based on three factors and three levels was carried out. Design-Expert 11 software (Stat-Ease, Minneapolis, MN, USA) was used to optimize the response surface and analyze the regression model of the relevant test data. The 6CSL-800 tea de-enzyming (Anji Yuanfeng Tea Machinery Co., Ltd., Huzhou, China) and carding machine (Anji Yuanfeng Tea Machinery Co., Ltd., Huzhou, China) was used as the verification test prototype, six sets of verification tests were carried out, and the test results showed that the maximum value of the strip rate index and the minimum value of the broken tea rate index were obtained. The order of the indicators affecting the bar-type rate and broken tea rate of the de-enzyming and carding machine from high to low is as follows: the height of the convex bar, the inclination angle of the slot body, and the number of slots bodies. When the height of the convex bar was 10 mm, the inclination angle of the slot was 90°, the number of slots was 12, the bar-type rate was 89.45%, and the broken tea rate was 1.63%. The prediction results of the regression model of the bar-type rate and broken tea rate of the tea de-enzyming and carding machine were verified by employing six sets of control tests with the 6CSL-800 tea de-enzyming and carding machine as the validation test prototype. The actual values of the bar-type rate obtained from the six sets of control tests were 88.19%, 90.37%, and 87.33% (1,2,3 group), and the actual values of the broken tea rate were 1.66%, 1.69%, and 1.61% (4,5,6 group), with average values of 88.63% and 1.65%. The control test was basically consistent with the results of parameter optimization. The processed finished tea has good quality, which can provide theoretical reference for the optimization and design of tea de-enzyming and carding machines and similar tea machines in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.