Abstract

Five fit men completed a practice, control, and sleep deprivation exercise test. Two nights of normal sleep preceded the control test, and 33 h of wakefulness preceded the sleep deprivation test. These tests consisted of 20 min of rest followed by 40 min of cycle-ergometer exercise (50% of peak O2 uptake, VO2) in a temperate (ambient temperature, 28 degrees C; relative humidity, 30%)-environment. Esophageal temperature (Tes), local sweat rate (mds), and chest thermal conductance (kch) were continuously measured. During exercise a 0.7 and 0.5 degrees C rise in Tes was found for the sleep deprivation and control tests, respectively. This increase in Tes values from rest to the end of exercise was greater (P = 0.08) for the sleep deprivation than control test. Total body sweat rate, calculated from Potter balance measurements, was 27% less (P less than 0.01) for the sleep deprivation than the control test. Both mds and kch values were lower (P less than 0.05) during the final 20 min of exercise for the sleep deprivation than control test. Final exercise mds values were 19% lower (P less than 0.05) for the sleep deprivation than control test. An asynchronous rather than a normal synchronous mds pattern was frequently observed during the sleep deprivation test. During the sleep deprivation test, the mds sensitivity (delta mds X delta Tes-1) was 38% lower (P less than 0.01) and kch sensitivity (delta kch X delta Tes-1) was 42% lower (P less than 0.05) than during the control test. These data indicate that sleep deprivation decreases evaporative and dry heat loss during moderate-intensity exercise.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call